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ABSTRACT

P
Previous experimental work conducted using laboratory soil columns

has shown that diffusion into regions of immobile water can have a large
effect on solute transport through porous media. This study focuses on
the development, analysis, and application of an analytical model which
incorporates the diffusion mechanism into the traditional three-
dimensional advective/dispersive solute transport equation.

By consecutively applying the Laplace transform in time and the
Fourier transform in space, analytical solutions are derived for the
coupled partial differential equations which describe threetgimensional
advective/dispersive transport through regions of wmobile water and
Fickian diffusion through immobile water regioﬁs of simple geometry
(spherical, cylindrical, and layered).

To assist in the analysis of the models, a mod _ied form of Aris' |
method of moments is presented, which permits the calculation of the
spatial and temporal moments of the three-dimensional diffusion models,
without having to invert the Laplace or Fourier transformed solutions.
Using this method, the moments of the diffusion models are compared with
one another, with the moments of a model that assumes equilibrium advec-
tive/dispersive transport, and with the moments of a model that assumes
a first-order rate law governs mass transfer between the mobile and
immobile regions. ., The method of moments is also used to analyze the
differences in the atial and temporal moment behavior of each trans-
port model under discuasion.

Finally, the results of a field experiment conducted to study
sorbing solute transport are presented and interpreted using these
models. It is shown that the first-order rate and diffusion models
offer one plausible explanation of experimental observations which are

unexplainable using the traditional advective/dispersive model approach.
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NOTATION
v(v + 2)De -1
a Diffusion rate constant: a = — T
b
vhere v = 1 for layered diffusion
v = 2 for cylindrical diffusion
v = 3 for spherical diffusion
b Characteristic length of the immobile region geometry, L
Ber, Bei,
Ber', Bei' ;Kelvin functions
c Solute concentration, -3
Ca Solgte concentration at a point within the immobile region,
ML~
Cn Solute concentration in the mobile region, ML™3
Cim Volgme averaged solute concentration in the immobile region,
ML~
D, Diffrsion coefficient within the immobile region: D] = D /x,
LT™
D Mgdified immobile region diffusion coefficient: Dg = Qélkim.
LT . .
Deffx, Effective dispersion cgegficients in the x-, y~-, and z-direc-
Deffy'neffz tions, respectively, LT
D, Liquid diffusion coefficient, L2T !
Defs Effective dispersion coefficient for use in the advection/
dispersion equation, LT
Dg,sDy,D, Dispersion cogfficient in the x-, y-, and z-directions, re~
spectively, L“T™

Duxtnny'nnz Mobile region dispersion coeffifients in the x~, y-, and
g-directions, respectively, LT

I)x.l)y,Dz Modified disper.&on_ leoefficient: in the »~, y-, and z-~directions,
respectively, LT

D! D! D!
z
For the equilibrium model: l)x = —;-, l)y = -&, D: "X

D D D
mx o -
For the nonequilibrium models: Dx - i;-' Dy - ﬁ;z’ D: i;-

£ Fraction of sorption sites in direct contact with mobile
wvater
;E;;:)] One-dinensional Fourier transform of the function f(x)
xv
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![f(x’y’z)]

Three~dimensional Fourier transform of the function f(x,y,z)

f(p,q,u)
1 V-1
1, Modified spherical Bessel function of the first kind, order
n:
n\1/2
1a(2) = (52) 7 Tpyy 2
I, Modified Bessel function of the first kind, order n
k¢ External film transfer coefficient, LTl
K,Kadg:Kdeg Freundlich isotherm coefficient
K4 Distribution coefficient, M 13
K, Modified Bessel function of the second kind, order n
L,M,N Half length, width, and depth of initial solute plume dis-
tribution, L
L[£(¢t)]
Et ) Laplace transform of the function f(t)
s
£,m,n x-, y-, and z-coordinates of location where concentration
response is measured
HT Total mass associated with the mobile region, M
M',M',M' Mass of solute injected into 1-, 2-, or 3-dimensional
123 media, M
M;,Mp,My - Modified injected mass, M
For the equilibrium model: M = Hi/(eR)
For the nonequilibrium models: M; = M{/(@,R,)
LY One~dimensional jth absolute sgpatial moment of the mobile
concentration distribution
J LIRS jth absolute temporal moment of the mobile concentration
’ response
Byyg Three-dimensional (j+k+z)th absolute spatial moment of the
mobile concentration distribution
ny e jth absolute temporal moment of the immobile concentration
’ response
LETY) Three-dimensional (jﬂtﬂ,)th absolute spatial moment of the

{mmobile concentration distribution

0,0,4g:0deg Freundlich isotherm exponents

Ny Total mass associated with the immobile region, M

P»q,u Fourier transform variables in the x-, y-, and z-direction,
respectively

Pe Peclet number: Pe = voz/D*

Pegss Effective Peclet number: Pegee = LVqoge/Doge

Pey Mobile region Peclet number: Pe, = ve/D, = v,t/Dy,
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R Average retardation factor: R =1 +'—32
prd
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St Stanton number: St = a/(v/%)
t Time, T
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For the nonequilibrium models: v = vg /Ry
N2 Effective veiocity for use in the advection/dispersion
equation, LT
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A/ Average pore water velocity in the x-direction, 1.'1'-1
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LT~
x,¥,2 Spatial coordinates, L
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Greek
. a' First-order mass transfer rate constant, T'l
3 a Modified first-order mass transfer rate constant: a =

a'/(84aR;0), T
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B = (eimnim)/( en%)

Ratio of diffusive to advective rates: for the first-order
rate model, y = a/(v/2); for the diffusion models, y =
a/(v/L)

Dirac delta function

Parameter used in spatial moment evaluation, T-l
Intragranular porosity
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Second central temporal moment, T2
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Integration variable

Ratio of mobile to total water content: ¢ = 6,/6
Tortuosity

xviil

A vt SRS




CHAPTER 1
INTRODUCTION

BACKGROUND

In recent years, the problem of groundwater contamination has re-
ceived widespread public attention. Hazardous chemical waste is being
generated at the rate of 60 million tons annually (U.S. EPA, 1980).
Whether intentionally disposed of or accidentally spilled, some of this
waste can eventually reach the groundwater and contaminate it. Ground-
water may transport the contaminants from the initial disposal site to
an area where a threat to public health may be posed. Therefore, it 1is
important to understand the processes affecting the transport of these
contaminants in the subsurface environment. In a study of the problem,
the Panel on Groundwater Contamination of the National Research Council
remarked,

Reliable and quantitative prediction of contaminant
movement can be made only if we understand the pro-
cesses controlling transport, hydrodynamic disper-
sion, and chemical, physical and biological reactions
that affect soluble concentrations in the ground.
(NRC, 1984).

Traditionally, the mathematical models used to describe solute
transport in groundwater flow systems have been premised on the advec-
tion/dispersion equation. Advection refers to the average motion of
solute due to the groundwater flow. Dispersion describes spreading of
solute about the mean displacement position. Dispersion is usually
attriduted to molecular diffusion, so-called mechanical dispersion, and
spatial variability. Mechanical dispersion is caused by local velocity
variations along tortuous flow paths and the velocity distribution
within each pore (Bear, 1979). Spatial variability produces velocity
variations on a macroscopic scale. In the advection/dispersion model,
the mechanical dispersion mechanism and spatial variability effects are
often assumed to be diffusive (that 1is, the dispersive flux due to
mechanical dispersion and spatial variability can be expressed by a
Fickian type law). Usually, the effect of molecular diffusion is as-
sumed negligible in comparison with the effect of mechanical dispersion
(Gillham et al., 1984).

- - . m -
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1f the solute sorbs onto the aquifer material, it is often assumed
that sorption is instantaneous, linear, and reversible. These assump-
tions permit modeling of sorbing solute transport using the advection/
dispersion equation as well (Bear, 1979).

The advection/dispersion equation is usually implemented under the
assumption that the dispersion coefficient is a constant property of the
porous medium and the mean velocity. However, results of laboratory and
field investigations have shown that the dispersion coefficient depends
on the scale of the test or the size of the domain through which the
solute travels, thereby invalidating the assumption underlying the
advection/dispersion model in its simple form (Gillham et al., 1984).
Stochastic models have been used to account for this scale effect. Sto-
chastic models assume that the statistical structure of a conductivity
field in a heterogeneous medium can be estimated. The models also
assume that the heterogeneous medium is a single realization of an
underlying stochastic process, and that the parameters of this process
may be approximated using the statistics of the conductivity field.
Also from these statistics, the dispersive capability of a single aqui-
fer may be determined by ensemble averaging over the conceivable aquifer
realizations (Gillham et al., 1984). These stochastic models have been
used to show that ensemb.ie solute spreading 1is generally not Fickian
(Gelhar et al., 1979; Matheron and de Marsily, 1980; Smith and Schwartz,
1980; Gelhar and Axness, 1983). A disadvantage of the stochastic
approach is that, since a real aquifer is conceived as a single realiza-
tion, the solute plume must migrate a sufficient distance so that the
ensemble averaging used in the stochastic model 1s interpretable
(Gillham et al., 1984).

Many stochastic models that have been developed neglect the mecha-
nisms of local mechanical dispersion and diffusion, so that spreading is
strictly a consequence of heterogeneous advection (Warren and Skiba,
1964; Mercado, 1967; Schwartz, 1977; Smith and Schwartz, 1980). A
heterogeneous advection model, when applied to a single aquifer realiza-
tion, predicts local irregularities in the concentration distribution
which will persist at a macroscopic scale (Sudicky, 1983). Sudicky
(1983) noted that in a field experiment where detailed measurements of
local concentration were obtained, this phenomenon was not observed, and

in fact, local irregularities observed at early times were smoothed out
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at later times. Sudicky (1983) proposed that the smoothness of the
observed macroscopic concentration patterns was the result of transverse
molecular diffusion, whereby solute which advects rapidly in the high
permeability zones diffuses into the less permeable zones. Sudicky
(1983) and GuUven et al. (1984) discussed the impact of diffusion on
solute transport in a layered system, and compared the so-called advec-
tion/diffusion model with stochastic models. It was shown that the
deterministic advection/diffusion model provided results which were
equivalent to results obtained from the stochastic theory developed by
Gelhar et al. (1979). Sudicky's (1983) and Giiven et al.'s (1984) stu-
dies were limited to the analysis of conservative solute transport in a
stratified medium, where each stratum had a different hydraulic conduc-
tivity, and therefore a different, though steady, groundwater flow
velocity.

The importance of diffusion into spehrical zones of low permeabil-
ity was demonstrated in column experiments conducted by Rao et al.
(1980) and Nkedi-Kizza et al. (1982). Goltz and Roberts (1984), using
numerical simulations, demonstrated how a solute transport model which
neglected the mechanism of diffusion could significantly underpredict
long-time contaminant concentrations.

The effect on solute transport of diffusion into low permeability
zones has been discussed in the chemical engineering literature over at
least the past thirty years (Deisler and Wilhelm, 1953; Vermuelen, 1953;
Rosen, 1954). More recently, these diffusion concepts have been applied
to study contaminant transport by groundwater (van Genuchten and
Wierenga, 1976; Rao et al., 1980; Nkedi-Kizza et al., 1982; Valocchi,
1985a; van Genuchten, 1985; Goltz and Roberts, 1986; Crittenden et al.,
1986; Miller and Weber, 1986). These studies, however, have all pre-
sumed one-dimensional solute transport. Since the groundwater eaviron-
ment is three-dimensional, there is value in deriving three-dimensional
formulations of transport models which incorporate the diffusion mecha-
nism.

SCOPE OF THIS INVESTIGATION

This work was undertaken in response to the apparent importance of

diffusion in affecting the groundwater transport of contaminants.
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Previous models which have incorporated the diffusion mechanism have
assumed one-dimensional transport, whereas this study will present a
three-dimensional formulation. The specific objectives of this investi-
gation can be summarized as follows:

1. Develop and test a transport model which incorporates the
mechanisms of advection, dispersion, linear reversible
sorption, and diffusion in a three-dimensional, infinite
medium. This study will be limited to the special case
where advection is due to a single, steady, groundwater
flow velocity.

2. Compare how simulations of such a model differ from simu-

lations of the advection/dispersion model, which tradi-
tionally has been used to describe contaminant transport.
To facilitate this comparison, develop and apply methods
for obtaining spatial and temporal moments of the concen-
tration distributions simulated using the different
models.

3. Compare and contrast simulations of the different diffu-
sion model formulations.

4. Apply the model to the data set obtained in an extensive,
high-resolution field experiment. Assess whether char-
acteristics of the spatial and temporal data are explain-

able wusing models which incorporate diffusion. In

addition, examine if alternate models which assume other
mechanisms (e.g., nonlinear, hysteretic sorption) can
explain experimental observations. This will require an
J analysis of the spatial moment behavior of these alter-

nate models.
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! CRAPTER 2
MODEL FORMULATION

This chapter reviews the so-called two-region models, which couple
an expression describing advective/dispersive solute transport in
regions of mobile water with an expression describing mass transfer into
regions of immobile water.

A three-dimensional formulation for such two-region models will be
presented and an analytical solution derived. The solution technique
$ involves consecutively applying the Laplace transform in time, and the

Fourier transform in space to the coupled set of partial differential

equations that mathematically describe the two-region models.

! REVIEW OF EXISTING MODELS

3 Transport of hydrophobic organic chemicals in groundwater tradi-
tionally has been described using the homogeneous advective/dispersive
X transport equation with a sink term to account for sorption of the
organic solute onto the so0il matrix. This sorption term is often devel-
oped assuming local equilibrium and a 1linear, reversible equilibrium
relationship between the quantity of the organic compound in the sorbed
and solution phases. Several investigators have found, in laboratory
column studies, that the nearly symmetric, sigmoid forms of breakthrough
responses predicted using models wmaking these simplifying assumptions,
do not agree with experimental observations (van Genuchten and Wierenga,
“ 1976; Rao et al., 1979; Reynolds et al., 1982; De Smedt and Wierenga,
f 1984). Frequently, experimental breakthrough responses exhibit highly
asymmetric or nonsigmoid profiles, commonly termed tailing. Tailing may
' be attributable to the slow diffusion of solute into zones of immobile
wvater. It has been hypothesized that these 2ones result from soil
aggregation, slow flow, or unsaturated flow (van Genuchten and Wierenga,
1976; Rao et al., 1980; Nkedi-Kizza et al., 1982; De Smedt and Wierenga,

1984).
Various models have been proposed to describe the exchange of
solute between mobile and immobile zones. The simplest of these, the
first-order rate model, assumes completely mixed zones of immobile

water, with a first-order rate expression describing diffusional
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transfer of solute between the mobile and immobile regions (Coats and
Smith, 1964; van Genuchten and Wierenga, 1976). These models couple the
advection/dispersion equation with a first-order rate expression.
First-order rate models have successfully simulated the observed tailing
in laboratory column solute transport experiments (van Genuchten and
Wierenga, 1977; van Genuchten et al., 1977; De Smedt and Wierenga,
1979a; Nkedi-Kizza et al., 1984). Analytical solutions for this type of

model have been derived for different initial and boundary conditions

A SRR A O TSR SR N > .,

applicable to finite and semi-infinite columns (Lindstrom and Narasimhan,
1973; van Genuchten and Wierenga, 1976; De Smedt and Wierenga, 1979b).
More complex models have been developed to describe the transfer of

solute within immobile regions by Fick's second law of diffusion. These

A

models, which couple the advection/dispersion equation with an expres-

sion to describe diffusion, will be referred to as diffusion models.

Frsoe

Diffusion models have also been successfully used to simulate the ob-
served tailing in laboratory column solute transport experiments {Rao et
al., 1980; Nkedi-Kizza et al., 1982). These models assume a geometry
for the immobile region. One-dimensional analytical solutions to diffu-
sion models have been derived, for semi-infinite boundary conditions,
assuming spherical (Pellett, 1966; Rasmuson and Neretnieks, 1980),
rectangular (Sudicky and Frind, 1982), and cylindrical (Pellett, 1966;
van Genuchten, 1985) immobile region geometries. Van Genuchten (1985)

summarizes solutions for different immobile region geometries.

Recent research has begun to focus on solute transport in “semi-
controlled” field settings (Leland and Hillel, 1982; Roberts et al.,
1982; Sudicky et al., 1983; Mackay et al., 1986). Solute pulses have
been introduced into groundwater under conditions corresponding to an
infinite medium, in which the medium is effectively unbounded upgradient
from the point of introduction as well as downgradient from the point(s)
of observation. To permit proper analysis of the data from the perspec-
tive of dispersion and diffusion phenomena, solutions to the transport
equation under the pertinent boundary conditions in a three-dimensional
infinite wmedium are required. Although one-, two-, and three-
dimensional solutions to the advection/dispersion equation in an infi-
nite porous medium are available (Carslaw and Jaeger, 1959; Bear, 1972;
Hunt, 1978), of the two-region models, only the first-order rate model

has been solved analytically for infinite, multi-dimensional conditions
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(Carnahan and Remer, 1984). Bibby (1979) combined a two-dimensional
finite element model with an analytical expression describing solute
diffusion into layers, to simulate chloride movement in a chalk aquifer.
However, to date, no multi-dimensional analytical solutions to diffusion
models have been presented. Such multi-dimensional solutions, with

infinite boundary conditions, are presented in this chapter.

ADVECTION/DISPERSION MODEL SOLUTION

Sorbing solute transport through a porous medium has often been
described using the advective/dispersive transport equation with a
sorption term (Bear, 1972):

2 2 2

3C(%,y,2,t) _ oy 3C , s 3°C . o, 3°C _ _ 3C _ p 3S _
3t D Tty 3D, T T Y T8 e (2-1)
X 3y 9z

where C(x,y,z,t) represents the aqueous solute concentration, S(x,y,z,t)
is the sorbed solute concentration, & 1is the aquifer porosity, p the
bulk soil density, Dg, D;, and D, are the principal components of the
dispersion tensor in the x-, y-, and z-directions, respectively, and Vo
is the average pore water velocity. Equation 2-1 implicitly assumes
steady, uniform flow in a homogeneous, isotropic porous medium. If
linear, reversible, equilibrium sorption is assumed, sorbed and aqueous
solute concentrations may be related using the concept of a partition or

distribution coefficient, Kgq, such that:
§ = K4C

With these assumptions, a dimensionless retardation factor, R, can be
defined:

R=1+EK,

80 Eq. 2-1 can be rewritten as (Bear, 1972):

] ] ]
aC(x,y,2,t) D_* E_E + EZ i_c + D_z 2 Y E (2-2)
at R2 K2 R.27 "R

Equation 2-2 has been solved for the following initial/boundary condi-

tions, representing an instantaneous point source in an infinite medium:

~
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C(x,y,z,0) = ;% 8(x)6(y)&(z) (2-3a)

c(t“sy,z9t) = C(x,t»,2,t) = C(x,y,t>,t) =0 (2-3b)

The solution is (Carslaw and Jaeger, 1959; Crank, 1975; Hunt, 1978):

(Rx-vot)2 Ry2 Rz2

1/2 DRt D't W't
x y z

t

M} R .

3/2 mint
/D/D'D;

c(x,y,z,t) = (2-4)

8o6(nt)

FIRST-ORDER RATE MODEL SOLUTION

We will begin our discussion of the two-region models by deriving
the solution to the first-order rate model in a three-dimensional, infi-
nite medium. This derivation will serve as a guide for the solution of
the slightly more complex diffusion models.

In three dimensions, the first-order rate model for sorbing solute
transport in a porous medium with immobile water zones may be written
(van Genuchten and Wierenga, 1976):

acm(x,y,z,t) D D _ eimkim aC

at R 2 R 2 R 2 emRm at

im

(2-5)

]

ac (XDY’z’t)
im - a (cm -C

ot eimkim

) (2-6)

These equations assume groundwater flow in the positive x direction, and
that D, Dmy
in the x-, y~, and z-directions. Cm and cim represent solute concentra-

» and Dy, represent the mobile zone dispersion coefficients

tions in the mobile and immobile regions, respectively, and 6, and 8y,
are mobile and immobile region water content, such that 6 = 8, + 64,
Equation 2-5 is the advection/dispersion equation with a sink term to
describe the mass transfer of solute from the mobile to the immobile
water region. Sorption onto the solids is assumed to be linear and
reversible, with the effect of sorption incorporated into R, and Ry,
the retardation factors for the mobile and immobile regions. Following

van Genuchten and Wierenga (1976), define:
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and

(1‘f)DKd
= ] $ ——
" eim

Ry

vhere f is the fraction of sorption sites adjacent to regions of mobile
water. Equation 2-6 is the first-order rate expression describing
solute transfer between the mobile and immobile regions, where a' is the
first-order rate constant.

For an instantaneous point source of solute in an infinite porous
medium, the following initial/boundary conditions apply to 2-5 and 2-6:

"
Ca(x:7:2,0) = 5= 6(06()8(2) (2-7a)

€ p(X,7,2,0) = 0 (2-7b)
Cy(d=,9,2,8) = Co(x,4=,2,t) = C (x,y,d=,t) = O (2-Tc)

Equation 2-7a represents the initial solute distribution in the mobile
zone, (2-7b) states that there is initially no solute in the immobile
region, and (2-7c) gives the boundary conditions for an infinite medium.

The method to solve (2-5) and (2-6) simultaneously, subject to
initial/boundary conditions (2-7), is given in Appendix A. The solution
is

L} [} t
C (x,7,2,t) = exp(e—:nf)c(x.y.z.t) + ﬁ Io H(t,1)6(x,y,2,1)dr  (2-8)

vhere
. 0, R _(t-1)1
(enkm)llzrllfe 2: im :nk 1/2}
=a'(t—t) _ _a't im im nm
H(t,1) = exp[—g—g ?R )
im im Dm [einkim(t—t)t]
Voo (172 2 2 2
G(x,y,2,¢8) = THS(R") 177 **el (RZ: nv:t) - azmy: - ::z t)
80m(wt) (Dnmnnybnz) ox m my nz
9
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and I,{ } 1s a modified Bessel function. This solution is equivalent to
the solution presented by Carnahan and Remer (1984).

The principle of superposition can now be used to integrate the
point source response to obtain responses for other initial conditionms.
Carnahan and Remer (1984) provided solutions for various initial condi-

tion geometries.

DIFFUSION MODEL SOLUTION

For diffusion models, Eq. 2-5, the advection/dispersion equation,
is still applicable. However, since these models allow for concentra-
tion gradients within the immobile regions, the dependent variable Cim
in (2-5) now represents a volume-averaged solute concentration within
the immobile zone. Of course, in the first-order rate model, where the
immobile zone is assumed to be perfectly mixed, the solute concentration

throughout the immobile zone equals the average concentration.

Spherical Geometry

b s e

Equation 2-5 makes no assumption regarding the immobile zone geome-
try. Assuming spherical immobile zones of radius b, the volume averaged

concentration, Ci{m» can be defined as.follows:

b

3 2
Cim ;3 IO r Ca(t,x,y,z,t)dr (2-9)

Fick's law of diffusion within a sphere is written:

aC D' 2 aC

a,_e3d 2 -
RimaT tZar(r ), Oir<b (210)

with the boundary conditions:
Ca(0,x,y,2,t) # = (2-11a)
Ca(b,x,y,2,t) = Cp(x,y,z,t) (2-11b)
The method to solve (2-5), (2-9), and (2-10) simultaneously, for an

instantaneous point source, subject to initial/boundary conditions (2-7)
and (2-11), is presented in Appendix B. The solution is:

10
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MéD'exp(v x/2D )
Cm(X.y,z,t) - N
(nb) (Dmemmez)
2
D ) i 4
x ] (2 exp(-R”zGZ ) Cos(-—2
b
im
where:
2 2
1/2
- G s h 5
mx wmy

r -
P 1.1/2
zm-( 2 )

r +Q
1,1/2
zp = (-Lf_) .

2 2\1/2
L (Ql + 92)

v: 3eimD;
8 = + 7 Y1
mx m Rnemb

' '

ZDel 301m0e )
2 2 "2

Rimb Rhemb

_ A(Sinh 2) + Sin 2)) _
¥1 ® ~Cosh 2) - Cos 2)

v. = A(Sinh 22 - Sin 2))
2 Cosh 2) - Cos 22

g Rhaith A¥a gt iis Bry Rl By S dte T e b nl AP RN e

B2z )l (2-12)

Superposing this solution will provide responses for other initial con-
ditions. It should be noted that solving for C, in Eq. 2-12 requires
the evaluation of an infinite integral. The integrand of this integral

is the product of an exponentially decaying function and a sinusoidally

oscillating function. The Gaussian quadrature methods described by

Rasmuson and Neretnieks (1981) and van Genuchten et al. (1984) may be

used to evaluate the integral numerically.

Cylindrical Geometry

For cylindrical immobile zones of radius b,

concentration is:

11

the volume averaged

a'a‘s mAadEER A faR _FIU.N "
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b
2
Cim - ;-2- IO !‘Ca(r,x,y,z,t)dt (2-13)

and Fick's law of diffusion in a cylinder may be written:

aC D! aC
8. 83 (r__2 -
Rm3t "7 ar('ar)' 0Lrxh (2-14)
with the boundary conditions (2-11a) and (2-11b). The analysis proceeds
analogously to the spherical geometry case, with the three-dimensional
point source response the same as (2-12), but in the case of cylindrical
geometry:

Lg A[Ber(A/Z)Ber'(A/2) + Bei(A/2)Bei'(A/2)]

wl- e

Ber2(A/2) + Beil(a/2)

- (2-15)
-',—g- A[Ber(avZ)Bei'(2v/2) - Bei(Av2)Ber'(i/2)]

v - —
2 nerz(x/i) + Beiz( AY2)

Rectangular Geometry

In the case of a rectangular immobile zone, it is physically more re-
alistic to consider advective/dispersive transport in a two-dimensional
mobile zone with diffusion into rectangular immobile zone layers of
half-width b. The set of equations which describes such a system is:

acn(x,y,t) !J‘le ? (':m EZ ) cm Va acm eimnim acim
3t "R *ROT7Z TR = TBR_at (2-16a)
m 9x m Jy m mm
30. Ozca
_a ' -
Rz =Dl —p . 0<z<h (2-16b)
oz
1 b
"% !0 C, (x,y,2,t)dz (2-16c)
with the initial/boundary conditions:
'
Cp(%,5,0) = 5~ 8(x)8(y) (2-17a) '
mm :
Cyp(x,y,0) = 0 (2-17b) |
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Cm(tw,y,t) = cm(x,to.t) =0 (2-17¢)
C (x,y,0,t) # = (2-174)
c;(‘s’:bnt) - cu(x'Y.t) (2-17e)

Using the methods given in Appendix B, these equations can be
solved to give the following result:

ZD;Hiexp(vmx/ZDmx)
cm(x»Y0t) = 3 172
8, R, (7b) (Dmxomy)
. 120 )% 1/2 1/2
x [0 Re{exp[———] K [R BZ, + 1R ' BZ, ]}adA (2-18)
R, b
m
where:
2 2
1/2
2 G Y
mx ny

K, is a modified Bessel function of the second kind, and Z, and Z, are

P
as defined in Eq. 2-12, though for rectangular geometry:

_ A(Sinh 2) - Sin 2))
¥1 * 3(Cosh 2x + Cos 21)

o A(Sinh 2) + Sin 2))
¥2 = 3(Cosh 2 + Cos 2))

MODEL TESTING

In the limiting case, as the volume of water in the immobile region
becomes small, and the diffusion rate within the immobile region becomes
large, the diffusion model solution should approach the solution of the
advection/dispersion model. To verify this, a test situation, which is
depicted in Figure 2.1, was devised. The concentration response to a
rectangular prism initial solute distribution of half length, width, and
depth L, M, N, respectively, may be calculated at a sampling well using
the advection/dispersion and spherical diffusion models. The solution
to the three-dimensional advection/dispersion model for a rectangular
prism source is well known (Carslaw and Jaeger, 1959; Hunt, 1978). This

13
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Figure 2.1. 1Initial condition for three~dimensfonal model testing.
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Comparison of the advection/dispersion model solution with
the limiting case of the spherical diffusion model: ¢ =
0.999, v_. = 0.091 m/d, 6 = 0.38, D, = 0.0334 m“/d, D
= 0.0027 'w2/d, Dy, * 1.0 x 107 w?/d, & = 5.0 m, m = 0.0 &)
n--o.aom,zL'loSIIl,P-3-0|n. N'o.sm,Rm.Rim.
3.0, and D /b“ = 0.715 47°.
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solution, for realistic parameter values, is plotted in Figure 2.2, as a
breakthrough response curve at the sampling well. Also shown in Figure
2.2 is the solution to the spherical diffusion model with very low
porosity in the immobile region [8;, = 0.00038] and relatively fast
diffusion [DL/(R;gb?) = 0.238 d”!] within the immobile region. This
solution was obtained, for a rectangular prism initial distribution, by
numerically superposing the point source response (Eq. 2-12) over the
length, width, and depth of the initial solute distribution. As ex-
pected, the solutions are identical, because the fraction of porosity in
the immobile region.was chosen to be so small as to be practically
negligible.

Another means of testing the diffusion model solution makes use of
the concept of approximate equivalence between the first-order rate
model and the diffusion model. Van Genuchten (1985) showed that the
concentration responses for the two models would be approximately the
same 1f the first-order rate parameter and the spherical diffusion rate

parameter were related by the expression:

D'®

b2

1
e im

a' = 22.68 (2-19)
The solution to the first-order rate model for a rectangular prism
source may be obtained by superposing the point source response
(Eq. 2-8) over the length, width, and depth of the initial solute dis-
tribution. This solution is Eq. 2-8 with:

! { Rm(L-!-x) - v t] [Rm(l..-x) + vmt]}
G(x,y,z,t) = —— lerf + erf
8R8y [Z(Dmmkmt)l72 z(nmxnm:)IIZ
fert] Rm(H-y) ] [ Rm(my) I
x {erf — 73 + erf —73
2(Dmykmt)1 2 2(°myRm‘)1 2
( [ Rm(N-z) ] [ Rm(N+z) ]} (2-20)
x {erf + erf -
z(n"‘znmc)u2 2(szRmt)1;2

Figure 2.3 shows the first-order rate model solution (Eqs. 2-8 and 2-20)

for some realistic parameter values.
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Comparison of the first-order rate and spherical diffusion
model golutions: ¢ = 0.902 vy = 0.091 m/d, 6 = 0.38, D, =
0.02 w?/d, Dy, = 0.0016 m?/d, Dy, = 0.6 x 107 w’/d, 1t =
5.0 m, m = 0.% m, n = -0.40 m,‘t-l.Sm, M=30m N=

0.8 m, Rﬂ L 2-78, and Rim = 5.00.

Using Eq. 2-19, an equivalent spherical diffusion rate parameter

may be obtained for use in the spherical diffusion model. As can be

seen in Figure 2.3, the solutions of the first-order rate model and the
spherical diffusion model are similar in form, but differ slightly in
detailed shape. In Chapter 4, the concept of model equivalence will be

discussed in more detail.
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CHAPTER 3
MOMENT ANALYSIS

In the preceding chapter, models were presented that describe solute
transport by integrating either a diffusion expression or first-order
rate expression into the three-dimensional advective/dispersive equa-
tion. A convenient means of quantitatively studying the solute plume
behavior predicted using such two-region or physical nonequilibrium
models is to examine the moments in space and time of the models' simu-
lated concentration distributions. 1In this chapter, a three-dimensional
form of Aris' method of moments is presented, and then used to derive
temporal moments associated with the mobile and immobile regions. 1In

addition, a one- and three-dimensional spatial analog to Aris' method is

developed, and used to examine spatial moment behavior in both the mobile
and immobile regions. The moment analysis is extended to assess the

effect of model dimensionality on the form of the moment expressions.

TEMPORAL MOMENT EQUATIONS

Mobile Region

Based on the definitions of the jth absolute temporal moment of a

solute concentration distribution, C,(x,t):

m, - [o te_(x,0)dt (3-1)

3,

and the Laplace transform of the function Cp(x,t):
- ® -t
LICy(x,t)] = T (x,8) = Io e B C (x,t)dt (3-2)

where 8 is the Laplace transform variable, Aris (1958) showed that:

j—
d4°C (x,s)
n, = D3 e (2

(3-3)
B 8+0 dsj

PP

Equation 3-3, referred to as Aris' method of moments, is quite useful,

since it allows the calculation of temporal moments without having to

invert the Laplace transform. Aris' method has been widely used,
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particularly in chemical engineering research, to analyze the temporal
moments of concentration responses simulated by wmodels which combine
one-dimensional advective/dispersive transport with a diffusion
expression (Kucera, 1965; Schneider and Smith, 1968; Wakao and Kaguei,
1982; Valocchi, 1985a).

Extension of Aris' method to two and three dimensions is straight-
forward, though as far as can be ascertained, has not been utilized
previously to describe solute transport. In three dimensions, Eq. 3-3

can be rewritten:

djfn(x,y,z,s)

o, - (—1)j m |

(3-4)
3, 8+0 dsj

Table 3.1 presents one- and three-dimensional solutions, in the
Laplace domain, for the mobile region concentration distributions of the
local equilibrium, first-order rate, and diffusion models. These
Laplace domain solutions are obtained from the derivations given in
Appendices A and B.

Equation 3-3 can be applied to the one-dimensional expressions for
mobile solute concentration listed in Table 3.la. It is convenient to
present the resulting moments in normalized form, where the jth normal-

ized moment "3.t is defined as:

o
' 1.t
et -

Results for the zeroth, first, and second normalized absolute temporal
moments are presented in Table 3.2. The moments for the local equilib-
rium and diffusion models have been reported previously by Kucera
(1965), who used initial/boundary conditions identical to those used
herein.

Similarly, Eq. 3~4 may be applied to the three-dimensfonal expres-
sions in Table 3.1b. The temporal moments for the three-dimensional
models are presented in Table 3.3.

An examination of Tables 3.2 and 3.3 reveals several important fea-
tures of the moments. In one dimension, the zeroth absolute temporal
moment , LIS is constant for all three models, and is equal to HI/V'
The v term in the denominator is due to the model initial condition,

which 18 expressed as a Dirac pulse of the solute in space (units of [M]),

18
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TABLE 3.1

MOBILE REGION SOLUTE CONCENTRATION IN THE LAPLACE DOMAIN
FOR VARIOUS MODELS

a. One-Dimensional

vx/2Dy
- e -x/¥/D)0(s
e (x,0) 21___ X/ /Ba(s)
2/Dx 0(s)
v2 2
where Q(s) = L
x
and N =g for the local equilibrium model
N2 = ;5%5; + s for the first-order rate model

8s Sinh{wb)

wb Cosh(ob) + 8 for the layered diffusion model

28 sIl(wb)

= m—b—w + s for the cylindrical diffusion model

3 sil(mb)

- m + s for the spherical diffusion model

b. Three-Dimensional

Em(x’Yozgs) - % e_GQ(S)

vx/2D

where F

2 2
s [X 4+ Y 42
and G / +Dy+D

fi(s) is defined as above
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TABLE 3.2
ABSOLUTE TEMPORAL MOMENTS FOR 1-D MOBILE SOLUTE CONCENTRATION RESPONSES

Local Equi%}brium First-Order Diffus%gn
Model Rate Model Model
mO,t MI/V HI/V M1/v
2D 2D 2D
2 x 2 x [} x
My  TYor T+ z)a+e §+ Z)a+e
v v v
2 6Dt 12n§ 2 602 IZD: , 2 D2 120: )
e 3t (St [ e
v v v v v v v v v
4D 4D
+[2_£+_x]§ +[2_£+__x_§
v v2 a v v2 a

v(v + Z)De

b2

where a =
and v =1 layered diffusion

v = 2 cylindrical diffusion
v = 3 spherical diffusion

*From Kucera (1965).

whereas the zeroth moment of a temporal distribution (one dimensional
concentration versus time) has units of [ML'IT]. Thus, to transform the
zeroth moment of the initial condition in space [M] to the zeroth moment
of a one-dimensional temporal distribution [ML'IT], it is necessary to
multiply by a factor with units [L'IT]. That factor is the constant 1/v.
the zeroth moment for the one-dimensional models is

since all the

As expected,
independent of both the diffusion rate and model type,
mass which was initially put into the one-dimensional space must even-
tually flow past the sampling point. Perhaps less obvious is the fact
that the zeroth moment is independent of the diffusion rate and model
type for the three-dimensional models as well. However, considering
a pathway connecting the initial solute distribution with any partic-
ular sampling location, it can be seen that, although diffusion would

affect the gpeed with which solute "particles” reach the sampling point,
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TABLE 3.3
ABSOLUTE TEMPORAL MOMENTS FOR 3-D MOBILE SOLUTE CONCENTRATION RESPONSES

Local Equilibrium First-Order Diffusion
Model Rate Model Model
) F e—c(v/2@ ) ¥ e-G(v/Z/lZ ) ¥ e—c(v/z/f);)
o,t G G G
¢ /5, ¢ /5, ¢ /5,
¥ie v - (1+8) (1+8)
G2Dx 2GD3/2 GZD 2 2GD3/2 GZDx 2 i/Z
ué,t 7 + 3 -7 (1+B) + -T (1+B) (1+8) + (1+B)
v v v v v
26 /D_ 26 /D_
+ x B + x 8
v a v a
, v(v + 2)D
e
N wvhere a = —
b

and vs=1 layered diffusion
v = 2 cylindrical diffusion
v = 3  gpherical diffusion
ve/2D_

Q

L}
(X
bl BN

+
bl B

the total amount of solute sampled would be dependent only on the total
injected mass (H3), the sampler location (,m,n), and the hydrodynamic

A A e el

parameters (v, Dg, D s D).
It 1is 1nteresting to compare the temporal first moments obtained
from the one-dimensional and three-dimensional models. Considering the

first moment of the three-dimensional models along the line of advective

PP P WLV

trangsport (m = n = 0), it is found:

w,e =y (3-6)

for the local equilibrium model, and
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b, = 2 (148) (3-7)

for the first-order rate and diffusion models. These values are less
than those of the one-dimensional models by a constant 2Dx/v2 for the
local equilibrium model, and ZDX(I+B)/v2 for the physical nonequilibrium
models. This effect, of essentially delaying the arrival of the center
of mass of the one-dimensional models, is due to the fact that with
the three~dimensional models, solute which disperses in the negative
x-direction may eventually disperse in the y~ and z-directions as well,
thereby never passing the sampling point on the y = z = 0 axis. How
ever, with the one-dimensional models, the solute which has dispersed in
the negative x-direction will nevertheless eventually pass the sampling
point, thereby increasing the first temporal moment. For the same
reason, the second temporal moments of the one-dimensional models are
greater than those of the three-dimensional models along the line

y=2z2=20.

Immobile Region

The methods of the preceding section may be applied to determine
the temporal moments of solute associated with the immobile regions.
Before commencing the analysis, however, some explanation is required to
define what is meant by the concentration distribution associated with
the immobile region.

With regard to the temporal moments, the immobile region concentra-
tion response would be obtained by sampling the immobile region at a
point in space. Conceptually, imagine a sampling point which yields
volume~averaged solute concentrations from a region of immobile water.

To insure mass balance, it is necessary to multiply moments obtained

factor. This weighting factor is required because solute is unevenly
distributed between the mobile and immobile regions. To determine the
value of this weighting factor, compare the total solute masses associ-
ated with the mobile and immobile regions of an incremental volume of
aquifer (dV). The total mass associated with the mobile region (aqueous
plus sorbed) is CmemRde, and the total mass associated with the immo-
bile region (aqueous plus sorbed) is cimeimkimdv' The ratio of immobile

to mobile solute masses is therefore:

22




c,.6, R BC

im im im _ im
cmemRm cm

Thus, to insure proper mass balance, moments obtained from the immobile
region concentration distribution must be multiplied by the weighting
factor 8. Therefore, the jth temporal moment of the immobile region
concentration distribution may be defined as:

» ag,e = [ t3(sc, (x,0)1dt (3-8)

0f course, for the local equilibrium model, g = O, and these moments are
identically zero.

The immobile region analogs to Eqs. 3-3 and 3-4 are:

W eTATa A A K

$=
d“c, (x,s)
3 im
n = g(-1)Y 1lim |——m——mpror- (3-9a)
3.t §+0 [ dsd )
3
3=
N d-c (x’Y’z:s)
. ay ¢ = 8(-1)3 14a [—12 (3-9b)

s+0 dsj

Equations 3-9a and 3-9b require solutions for the immobile concentra-
tions in the Laplace domain, for the various models. Table 3.4 lists
these solutions in one and three dimensfons. The zeroth and first
moments, obtained by applying Eqs. 3-9a and 3-9b to the immobile solute

concentration expressions listed in Table 3.4, are presented in Table

T

3.5. As with the mobile concentration response moments, it is conve-

- Y

nient to express moments greater than the zeroth in terms of normalized
monents, defined as:

. K1 i}
Vit B¢ (3-10)

Compare Tables 3.2 and 3.5, to find that:

' n +n - {118) M

o,t o,t v (3-11)

for the one-dimensional physical nonequilibrium models. This is again
due to the conversion of an initial condition in space to a zeroth
moment in time. It should be noted, however, that the conversion factor




TABLE 3.4

IMMOBILE REGION SOLUTE CONCENTRATION IN THE LAPLACE DOMAIN
FOR VARIOUS MODELS

One-Dimensional

Ein(x,e) - + = C 0 (%:8) for the first-order rate model
Eim(x,s) - bsé::t(l?zi): Em(x,s) for the layered diffusion model
_ 21, (wb)
3 Cim(x,s) =5 I ( 5 C (x,s) for the cylindrical diffusion model
' _ 31 (wb)
i Cim(x,s) _b_:l(_bf C (x,s) for the spherical diffusion model

vhere -é'u(x,s) for each model is defined in Table 3.1.

Three-Dimensional

Eim(x,y,z,s) ® s Em(x,y,z,s) for the first-order rate model

= _ _ Sinh(wb) =

cim(x’y’z’s) =5 Cosh(wb) Cm(x,y,z,s) for the layered diffusion model
_ 21 (mb)

Cim(x,y,z,s) —b_I(—ub_)' n(x,y,z,s) for the cylindrical diffusion model
_ i (mb) _

Cim(x.y.Z,a) W— C (x,y,z,8) for the spherical diffusion model

where '(_:m(x.y,z,u) for each model is defined in Table 3.l.

for the total solute, mobile plus immobile, is (1+8)/v, whereas for the
mobile solute alone, the conversion factor was 1/v. This is because the
total solute mass movement is slower than the mobile region mass move-
ment due to the influence of the immobile region.

This effect can be geen more clearly by comparing the first tem-
poral moments of the mobile and immobile solute concentration responses.
The first moment of the immobile region response lags the first moment
of the mobile by a constant: 1/a for the first-order rate model, and
1/a for the diffusion models.




S A A e e e AR

TABLE 3.5
ABSOLUTE TEMPORAL MOMENTS FOR IMMOBILE SOLUTE CONCENTRATION RESPONSES
First-Order Diffusion
Rate Model Model
One~-Dimensional
. BM1 BMI
o,t v v
| \ r(ieg) | (48 s(ep) | Px(HE)
vi,t v ) r v t——= 3
v v
Three-Dimensional
“ . J e-c(v/z/ux) o F e-c(v/z@)
. o,t G G
G vD_ G vD_
: x 1 x 1
i vie T (148) + = = (148) + 2
\)(\3+2)De
r where a = ——
b2

and v =1 layered diffusion
) v = 2 cylindrical diffusion
v = 3  spherical diffusion

M3evz/21>x )
F=—  __ , G= ﬁ‘*%‘*g—
4n "DnyDz x y z

SPATIAL MOMENT EQUATIONS

Mobile Region

Analogous to definitions (3-1) and (3-2), the one-dimensional jth
absolute spatial moment of the concentration distribution, C,(x,t), 1is:

ay = [ xc (x,t)dx (3-12)

and the Fourier transform of the function, Cp(x,t), is defined by:

PICy(x,0)] = Enlput) = [ e 1P ¢ (x,t)dx (3-13)
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where p is the Fourier transform variable. Using the following property
of the Fourier transform (Spiegel, 1968):

jA
LI d’C_(p,t)
pixdcy(x,0)] = [ e P* xdc (x,t)ax - I B~ (3-14)
- n dpj
take the limit as p + 0 to find:
jA
© d-C (p,t)
[ we (x,t)ax = tdim B (3-15)
- p*0 dpj
and then using Eq. 3-12 write:
jﬁ
a C_(p,t)
o, = 13 1o 2" (3-16)

3 p+0 dpj

This is the one-dimensional spatial analog to Aris' method of tem-
poral moments. Although Eq. 3-16 is a well known property of Fourier
transforms (Bremermann, 1963; Bracewell, 1978), it apparently has never
been used previously to obtain moments of spatial concentration distri-
butions for solute transport models.

The extension of Eq. 3-16 to two and three dimensions {s straight-
forward. 1In three dimensions, the absolute spatial moment of the con-

centration distribution C,(x,y,z,t) is:

o =S ] xjykzlcm(x.y.z.t)dxdydz (3-17)

-gp =00 =g

The Fourier transform in three dimensions 1is defined (Bracewell, 1978)
by

'(Cm(xoy’z)t)] - an(Paq’“nt) -

@ o e

[ [ ] e “1(pxtaytuz) C (x,7,z,t)dxdydz (3-18)

-0 —® =—w
wvhere p, q, and u are the Fourier transform variables in the x-, y-, and
g-directions, respectively. With these definitions, follow the one-
dimensional analysis directly to find:

)
3 4k d°¢ (p,q,u,t)
- 3L g4, 8 3 e () (3-19)
p:g dp” dq du
q
u+0

g 1'7)
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As with Aris' method for temporal moments, these spatial moment equa-
tions, (3-16) and (3-19), are quite useful, since they allow the calcu-
lation of moments in the Fourier domain, thereby eliminating the need
for complicated inversions of the transforms.

Appendix C presents the details of deriving the absolute spatial
moments for the 1local equilibrium, first-order rate, and diffusion
models. The method followed for all three models is essentially the
same. The model equations, with appropriate initial/boundary conditions
for a solute pulse in an infinite medium, are Fourier transformed. The
equations are then solved in the Fourier domain for ém(p,q,u,t).
Equation 3-19 is then applied to obtain the zeroth, f